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The atom arrangement in ternary and quaternary ionic long-range-ordered derivative structures of ZnS, 
NaCI, CsCI and others is governed by a principle which is known as Pauling's electrostatic valence rule. 
This valence rule is actually part of a more general ordering principle for derivative stractures, which is 
not restricted to ionic compounds and requires that the smallest building blocks of the structure 
(centred tetrahedra, octahedra or cubes) have as far as possible a composition identical with the overall 
composition of the compound. Depending on the type of polyhedron, this rule can be fulfilled only for 
a limited number of overall compositions. In this case it is possible to produce an analytical formulation 
of the general ordering principle giving relations amongst the Warren short-range-order parameters. 
Use of these relations in a structure-factor formula of the binary base structure permits the derivation 
of the general location (lines, planes or a general surface) of superstructure reflexions or diffuse inten- 
sity in reciprocal space for the cases of long-range order or short-range order respectively. With this 
method it is possible not only to explain the experimentally determined diffuse intensity shapes due to 
short-range order in NaCl-related structures, but also to predict the diffuse intensity shape for ZnS and 
CsCl-related structures and others for which no experimental data are yet available. 

Introduction 

In a recent electron diffraction study of VC0.75 with 
NaC1 defect structure, curved diffuse streaks were 
found by Billingham, Bell & Lewis (1972b), which 
were explained by Sauvage & Parth6 (1972) as being 
caused by a short-range order of carbon atoms and 
vacancies occupying the corners of the vanadium- 
centred octahedra. However no explanation was 
given for the form of the diffuse intensity surface which,, 
according to our experimental results, obeys approxi- 
mately the equation 

cos ~Zhl + cos ~h2 + c o s  gh3  = 0 , 

where hi, h2 and h3 are continuous variables in recip- 
rocal space. Dr de Bergevin drew our attention to the 
work of Brunel, de Bergevin & Gondrand (1972) on 
possible short-range order in ionic LiFeO2 with a NaC1- 
derivative structure which predicted a diffuse-intensity 
surface obeying the above equation. 

We have generalized the theory of de Bergevin to 
include not only the defect carbides with NaCl-related 
structures, but also to predict possible short-range- 
order diffuse-intensity surfaces in non-ionic crystals 
built up from other polyhedra. 

A general ordering principle for derivative structures 

As LiFeO2 is an ionic compound Brunel et al. (1972) 
applied Pauling's electrostatic valence rule (Pauling, 
1960). This l ule has been shown many times to be suc- 
cessful in explaining the atomic arrangement in ternary 
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and quaternary ionic ordered derivative structures of 
ZnS, NaC1 and other structure types. Brunel et al. 
postulated that the charge of the oxygen ion must also 
be compensated in the short-range-ordered state, re- 
quiring an occupation of the surrounding octahedron 
by three Fe 3+ and three Li + ions. 

Pauling's electrostatic valence rule for ionic com- 
pounds may be generalized to give an ordering prin- 
ciple for derivative structures, which requires that the 
smallest building blocks of the structure have as far 
as possible a composition identical with the overall 
composition of the compound. As will be shown in the 
next section, this statement gives rise to relations 
amongst short-range-order parameters. As no assump- 
tion has been made about the nature of the interatomic 
forces, this formulation also includes for example defect 
structures like V6C5 where each V atom has five carbon 
atoms and one vacancy on the corners of a surround- 
ing octahedron. Thus it is not necessary to touch upon 
the difficult problem of specifying what the actual 
charge, if any, of V and C in the compound should be. 

Equations for short-range-order parameters for 
derivative structures 

Let us consider a compound (AxABxB)Yy which occurs 
with a derivative structure of XY~. Atoms A and B 
are distributed on the corners of polyhedra centred 
by Y atoms (octahedra, trigonal prisms, tetrahedra or 
cubes in NaCI, NiAs, ZnS or CsCl-related structures 
respectively). Short-range interatomic forces are as- 
sumed to be strong enough for the ordering principle 
to be fulfilled. To characterize the state of order several 
parameters will be used in the calculations which 
follow: 
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am" Short-range-order parameter related to the over- 
all probability pAa for an A atom to have a B 
atom as mth-nearest neighbour through the for- 
mula: 

pAB 
0~m----I ( | )  

XB 

N: total number of polyhedra in the crystal 
NAB: total number of AB pairs, mth-nearest neighbours 

in the crystal 
S: number of corners of a polyhedron 
p:  number of Y-centred polyhedra which share one 

corner 
era: number of Y-centred polyhedra which share one 

pair of ruth-nearest neighbours. 
In ZnS-related structures the tetrahedra share 
corners only, in NaC1 and NiAs-related structures 
the octahedra and trigonal prisms respectively 
share edges, in CsCl-related structures the cubes 
share faces and in CaFz-related structures the 
Y-centered cubes share edges only. The corre- 
sponding values for S, p and era are therefore: 
ZnS-related structures: S = 4, p = 4, ex = 1 
NaCl-related structures: S = 6, p = 6, e~ = 2, e2 = 1 
NiAs-related structures: S = 6, p = 6, e~ = 3, e2 = 2, 

ea= 1 
CsCl-related structures: S = 8, p = 8, ex = 4, e2 = 2, 

e a = l  
CaFz-related structures: S = 8, p = 4, e~ = 2, e2 = 1, 

e a = l .  
km : number of mth-nearest neighbours of one atom in 

an isolated polyhedron. The values of kra are for a 
tetrahedron: ko = 1, k~ =3 
octahedron: k0 = 1, k~ = 4, k 2 = 1 
trigonal prism: k0 = 1, k~ = 1, k2 = 2, ka = 2 
cube: k o = l ,  k1=3, k2=3, ka= 1 . 

In the trigonal prisms we define, regardless of the rela- 
tive prism dimensions, first neighbours as those on the 
prism axis, second those in the prism base and third 
those on the prism face diagonal. 

We note that 
I polyhedron 

E k m = S "  (2) 
m=O 

pm AB can be expressed in terms of the above quantities" 

pmAB__ NAm B 
(XANS/p) (kmP/em) (3) 

where xANS/p  is the total number of A atoms in the 
crystal and kraP/em the maximum number of ruth-nearest 
neighbours per atom within the Y-centred polyhedral 
framework. 

(1) and (3) lead to 

k m ( l _ _ u m ) =  em NAma 
XAXBNS " (4) 

Summing over m and using (2) gives: 
1 polyhedron l l polyhedron 

km~ra :- S • E era N A B  ( 5 )  
m=0 X A X B N S  " " m=O 

From now on, three different cases may be distin- 
guished: 

(1) The structure is built from one kind o f  polyhedron 
only whose corners are occupied by xAS and xBS, A 
and B atoms respectively, in agreement with the bulk 
ratio of A to B atoms. Since xAS and xBS must be 
whole numbers (Xa=0, 1/S, 2 / S , . . .  1), depending on 
the type of polyhedra involved, only a limited number 
of overall compositions (AxABxB)Yy is possible. Re- 
stricting ourselves to the cases where XB > XA the pos- 
sible ternary compositions (multiplied to give integral 
composition parameters) are: 
ABaY4, ABYz for ZnS-derivative structures 
ABsY6, AB2Ya, ABY2 for NaC1 and NiAs-derivative 

structures 
AB7Y8, AB3Y4, A3BsYs, ABY2 for CsCl-derivative 

structures 
and 
ABTY4, AB3Y2, AaBsYa, ABY for CaFz-derivative 

structures. 
The basic polyhedron is characterized by the values 

n~ 8 which are the numbers of A-B bonds between mth- 
nearest neighbours within this polyhedron. The total 
number of A-B pairs within one polyhedron is given 
by 

1 polyhedron 

n,A,B=xAS, x B S = x A  . XBS 2 • (6) 
m=0 

As an example Fig. 1 shows various polyhedra where 
XA = X~ = ½, together with the corresponding n,A, B values. 

As only one type of polyhedron is considered, the 
total number of AB pairs mth-nearest neighbours is 
given by: 

Nm h a -  n~n U .  (7) 
era 

Consequently 

1 polyhedron 

emN~B=NXAXBS z (8) 
m=O 

and thus (5) takes on a very simple form" 

1 polyhedron 

kraam=0 (9) 
ra----O 

which has the special solutions for a derivative struc- 
ture with Y-centred 

tetrahedra: s0 + 3e~ = 0 (9.1) 

octahedra: s0 + 4cq + e2 = 0 (9.2) 

trigonal prisms: e 0 + s ~ + 2 s 2 + 2 e 3 = 0  (9.3) 

cubes: c~0 + 3e~ + 3s2 + ~a = 0 .  (9.4) 

Brunel, de Bergevin & Gondrand (1972) found the 
e q u a t i o n  4 ~ l - k - s 2 - - -  1 for the particular case of a 
NaCl-derivative structure with xA = xB = ½. This is iden- 
tical to (9.2), the equation for derivative structures with 
Y-centred octahedra. 
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(2) In polyhedra with more than four corners, a 
unique value of the occupation ratio may correspond 
to several distributions of A and B among the S cor- 
ners as shown in Fig. 1. When the structure consists of 
a mixture of polyhedra with the same A/B ratio but 
different individual nmA~ values, (7) is no longer valid 
but must be replaced by a summation over i: 

n 

NAmB-- 1 ~ UinAm~ (1 O) 
--  em i=l 

where N, denotes the total number of type-i polyhedra. 
Considering that 

N~=N (11) 
i = 1  

and that (6) does not depend on i since XA, XB and S 
are the same in all polyhedra, we obtain 
1 polyhedron n I polyhedron 

= E AB = NXAXBS2. (12) emNAm" N, ~ .nml 
m= 0  i = 1  m = 0  

Relation (12) is identical to (8) and thus (9) is. also 
valid in this ease. 

There are two interesting features of equation (9). 
One is that it depends neither on the value of S nor 

on the particular values of x A and xB as long as the 
restrictive condition ' is fulfilled that xAS and xBS are 
whole numbers. This condition implies that all Y-cen- 
tred polyhedra have the same A/B occupation ratio 

A B  (regardless of whether the individual nm are the same 
or not). Secondly, the particular type of linkage be- 
tween the polyhedra does not enter in the formula al- 
though it affects the individual a m values. Only the 
polyhedron itself determines the particular form of (9) 
which is thus a general mathematical formulation of 
our ordering principle for derivative structures. The 
special solutions apply to all derivative structures hav- 
ing Y-centred tetrahedra, octahedra, trigonal prisms 
and cubes. When a refers only to the occupation of the 
Y-centred polyhedron corners, which is usually but not 
always the case, the presence of other atoms outside 
the polyhedral framework does not affect the validity 
of (9). Examples for these more complicated derivative 
structures with composition AxABxBYyZ= might be 
found with spinels or garnets. If there are different 
types of polyhedra in the structure, then (9) should be 
valid for each polyhedron framework separately. The 
above equations for short-range-order parameters are 
valid for short-range as well as long-range-ordered 

TETRAHEDRON OCTAHEDRA TRIC-~)NAL PRISMS 

n AB :4  
1 

nAB:81 nAB:6 

n AB :1 n AB :3  
2 2 

CUBES 

n~ AB:3 n~ B :  t -nIAB= 3 

AB= 0 AB=4 nAB=4 rl2 n2 2 

n3AB = 6 n;  9 = 4 n '~3 = 2 

i 

AB =8 AB_ 8 AB =42 n ~ = 4  n f = 6  n I n I - n I 

.- AB2 -- 8 n 2AB =8 nZAB = 6 n2A8 = 8 n2AB = 0 

AB AB = 2 n~ B = 2 AB = 0 AB = 4 n 3 =4 n 3 n 3 n 3 

F i g .  1. P o l y h e d r o n  c o r n e r  o c c u p a t i o n  w h e n  X A : X B : ½. 

A C 30A - 8 
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derivative structures. In the first case, the particular 
substituted polyhedra are not arranged periodically, 
while in the second case a periodical distribution of 
polyhedra leads to a superstructure unit cell. 

(3) If the bulk composition is such that it is not pos- 
sible to build the whole crystal with N identical Y-cen- 
tred polyhedra, the sample can still be described as an 
association of N polyhedra showing n different occupa- 
tion ratios ( N I . . . N / . . . N ,  polyhedra with xA1S.. .  
XA/S. • • xA,S A atoms and xBtS. . . xmS. . . XB,S B atoms 
on their S corners). 

To ensure that the overall concentration is preserved, 
the following relations must be fulfilled: 

~ N i = N  
i - - 1  

~ NlxAi 
• i - - - - I  __(XAi)=X A 

~ N I  (13) 
l = t  

NixBI 
l=, -(xBi)=x~ 

i = 1  

Nm AB is still given by (10), but (6) is now different for 
each type of polyhedron: 

1 polyhedron 
AB =xAlxmS 2 (14) //ml 

m=0  

As a consequence the summation over i cannot be 
readily performed and (12) becomes" 

1 polyhedron 

X emNAmB=S~ NiXAIXBi " ( 1 5 )  
m = 0  1=1. 

Combining (5) and (15), one obtains" 

1 p o l y h e d r o n  NIXAiXBI 
kr,,OCm=S 1 -  ' =  . (16) 

m=0 ~ ! 

Making use of (13), (16) can be written" 
1 polyhedron [ (XAiXBI) 

kmO~m=S [, 1 -  (17) 
m-O <xTd,> 

where, since xA~ and x m are correlated variables (xAt + 
XBI= 1), the mean value of their product is different 
from the product of their mean values. 

For a numerical evaluation it is more convenient to 
express (17) in a different way: 

1 polyhedron ~_lj~_ NiNJ(xAI--XAj)2 
~.. km~m=S ,_ _ I -N  N (18) 

, . = 0  2 . X A . X B 

The numerator of the right-hand side is always greater 
than zero unless all the XAI are equal, which corresponds 
to the case dealt with previously. 

In the cases of interest here, two differently sub- 
stituted polyhedra will usually be sufficient to build the 
crystal. Thus 

N1 Nz and XB N1 Nz 
X A :  ~ -  XA1 "t- ~ XA2 : ~ XB, "t- - ' ~  X B 2 .  

Further, the two polyhedra involved show occupation 
ratios as close as possible to the bulk ratio of A to B 
atoms. In this case one finds that 

IXAt-- XAzl = 1/S (19) 

/I 
T i 

v,(c,o) i 

i x 

XB 

Fig. 2. Variation of ~ k,,a,, with composition for NaCl-deriva- 
tive structures. Ti2Cn: Bell & Lewis (1971), Goretzki 
(1967); V6CsO: Venables, Kahn & Lye (1968), Billingham, 
Bell & Lewis (1972a), Hiraga (1973); VaCTrn: Guerin & De 
Novion (1971); FeLiO2, NaFeO2: Brunel, de Bergevin & 
Gondrand (1972); Li2SnO3: Lang (1954), Lang (1966); 
Li2MnO3: Jansen & Hoppe (1973); LisIO6: Lang (1966). 

i t e ~  i 
~" kmO~ m 
m:o 1 

i / 

o.J /J 
04- j 

03- 

0.2- 

OA- 

x B 
0 0 ;  = 

Cul o.6 0.7.  t . 08 
ts~ (c%sb)s,, z~s 

Fig. 3. Variation of Y kraft,, with composition for ZnS-derivative 
structures. CuFeS2: Strukturbericht (1928-1932); Cu2GeS3: 
Parth6 & Garin (1971); CuaSbS4: Structure Reports for 
1957 (1964). 
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and (18) takes on the simple form 

N~ N~ 
1 polyhedron 1 N ..... N 

kmam - . (20) 
m=0 S X A . X B 

Fig. 2 shows the variation of the sum 

1 o e t a h e d r o n  

km~m = ~o + 4a~ + a2 
m = O  

with composition for NaCl-derivative structures ac- 
cording to equation (20). The values corresponding to 
the long-range-ordered phases like V8C7, V6C5, 
Li2SnO3 and LiFeO2 are indicated together with the cal- 
culated value for the short-range-ordered phase V4C3. 
It is known from n.m.r, data that this phase consists 
of equal numbers of V-centred octahedra having either 
5C and 1 vacancy (E3) or 4C and 2[2 which leads to: 
~0+4al+a2 = +0.222. Froidevaux & Rossier (1967) 
have investigated a composition range of NaCl-re- 
lated phases from VC0.67[--]0.33 t o  VC0.89[--]0.11. They 
found a mixture of octahedra having 5C and 1 [] with 
octahedra having 6C and 0[] or 4C and 271 depen- 
ding on composition. 

Fig. 3 shows the variation of the sum 

i t e t r a h e d r o n  

ra=0 

with composition for ZnS-derivative structures accord- 
ing to equation (20). It is easy to check that the value 
1 + 3al = 0.25 calculated for Cu2GeS3 with the assump- 
tion that it consists of -~- of S-centred tetrahedra with 
1Ge and 3Cu and ½ with 2Ge and 2Cu is in perfect 
agreement with an a~ value of - ¼  determined directly 
by inspection of the crystal structure (Parthd & Garin, 
1971). 

The occurrence of polyhedra which are not the 
closest to the nominal composition results in a value 
of ~kmoem larger than the one calculated from equa- 
tion (20). 

Relations between short-range-order parameter 
equations and the intensity scattered in between the 

reflexions of the base structure 

In the following we shall show that a relation exists 
between the equations for the short-range-order par- 
ameters and the intensity scattered in between the re- 
flexions of the base structure. As a result, scattered in- 
tensity may occur only on certain surfaces in reciprocal 
space which may be reduced to planes or even lines 
depending on the base structure. If we have short- 
range order only, diffuse intensity should be observed 
anywhere on these surfaces. If the substituted poly- 
hedra are long-range-ordered, discrete superstructure 
reflexions occur which must be located somewhere on 
these same surfaces. 

The connexion between short-range-order param- 
eters and the intensity I(H')  scattered in between the 
reftexions of the base structure is given by" 

1 
I I (H')  exp (2niH' .  rm)dV* (21) 0~m = V *  V* 

where H'  is any position vector in reciprocal space 

H' = hla~ + h2a~ + h3a~ , 

* * and * al,  a 2 a 3 are the reciprocal vectors of the base 
structure, hi, h2, and h3 can have any value and are not 
necessarily integers and rm is a vector connecting mth- 
nearest neighbours in the direct structure. 

The existence of a relation such as (9) between the 
parameters implies certain conditions on the func- 

tion I(H').  This was shown for (9.2) applicable to 
NaCl-related structures by Brunel, de Bergevin & 
Gondrand (1972). We shall treat here in detail the cal- 
culation for CsCl-related structures. 

In CsCl-related structures the atoms involved in the 
ordering process are distributed on cube corners and 
therefore each atom has: 

6 first-nearest neighbours with rx 
= + a<100> 

12 second-nearest neighbours with r 2 
= +a ( l lO) ,  +a(TlO) 

8 third-nearest neighbours with r3 
= + a ( l l l ) ,  + a ( i l l ) .  

The c~ parameters used for (9) are given by the average 
of (21) over equivalent rm vectors which leads to: 

1 I v , I ( H , ) d V , =  1 (22.0) 

1 fv , i (H,)  ~1 = -V ~ .1  (cos 2rchl + cos 2zth2 

+cos 2zch3)dV* (22.1) 

1 lv,i(H,)½(co s a2 = ~ 2rchx . cos 27¢h2 

+cos 2zch2. cos 2zcha +cos 2zchi. cos 2z~h3)dV* 
(22.2) 

1 
I I (H ' ) .  cos 2zchl. cos 2nh2. cos 2zch3dV*. 

~ 3 =  ~ ,~V* 

(22.3) 
Putting (22) in (9.4), one obtains" 

1 Iv,I(H') V* . [(1 +cos 2~hl) • (1 +cos 2zch2) 

x (1 +cos 2zch3)]dV*=0. (23) 

For (23) to be satisfied I(H')  must have non-zero values 
only on the surface described by the equation: 

(1 +cos2z@). (1 +cos 2z~h2). (1 +cos 2nh3)=0 (24) 

which corresponds to a set of planes in reciprocal space 
with 

A G 30A - g* 
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hi - 2m2 + 1 , h2 - 2n2 + 1 , h3 - 2 p  2 + 1 (25) 

where m, n, p represent any integer. This surface is 
shown in Fig. 4(c). 

Following the same procedure one can obtain for 
NaCl-derivative structures an equation equivalent to 
(23): 

1 
I I(H')  2 (cos rch~ + cos rrh2. Zkmo~m=--~ -V, 

+cos  nh3)2dV*=O. (26) 

Thus the diffuse intensity I(H')  has to be on a surface 
described by 

cos rchl + cos nhz + cos nh3 = 0.  (27) 

This triple periodic surface is shown in Fig. 4(b). 
Starting with (9.1) and using the same approach one 

can derive for the general location of intensity in zinc- 
blende-derivative structures the relation 

1 + cos rchl. cos zch2 + cos rchz. cos zch3 
+ cos zch3. COS rch~ = 0.  

The solutions of (27) represent a set of lines 

h l = 2 m + l  [ h t = 2 m  
h2 = 2n "[ h 2 = 2n + 1 

{ h i  =2m {h2 =2n 
h s = 2 p +  1 h 3 = 2 p +  1 

which are shown in Fig. 4(a). 

{ h l = 2 m +  1 
h 3 = 2p 

h z = 2 n +  1 
h3=2p 

(28) 

(29) 

Comparison with exl:erimental data 

(1) Short-range-ordered structures 
The only available data refer to NaCl-derivative 

structures. Two main groups are to be distinguished: 
first the substoichiometric transition-metal carbides 

and nitrides T(C,N)I_x and second mixed oxides like 
LiFeO2. 

Short-range-ordered compounds with nominal com- 
positions T 6 C s [ ]  exist for T = N b  and T = T a  where 
broad diffuse bands appear on electron diffraction pat- 
terns along a surface obeying (27) (Venables & Meyer- 
hoff, 1972). In V6C5 the vacancies are mostly ordered 
at low temperature. However an electron diffraction 
pattern by Hiraga (1973) shows narrow diffuse streaks 
in the correct location. 

TiNl_x (x'~ 0.33) and TiCl_x (x-~ 0"5) have the same 
type of diffuse scattering as NbCI_~, (Billingham, Bell 
& Lewis, 1972b). 

The diffuse intensity distribution in the short-range- 
ordered compound V4(C3Q) is also fairly well described 
by (27), although the nominal composition implies the 
existence of two differently substituted octahedra. It 
was shown that a better matching with the observed 
intensity distribution was obtained by introducing a 
correcting term in (27) but this hardly changed the c~ 
values (Sauvage & Parth6, 1972). The sum c~ 0 + 471 + ~2 
remained close to zero instead of approaching 0.22, 
a value to be expected from (20). In order to overcome 
this contradiction a quantitative estimation of diffuse 
intensity, which was previously assumed to be constant 
and concentrated on the theoretical surface, has been 
performed by neutron diffraction. The results of this 
experiment will be presented in a forthcoming paper. 

The second example of short-range-ordered com- 
pounds with NaCl-related structures is provided by 
the double oxides like LiFeO2. De Bergevin & Brunel 
(1968) had predicted that diffuse intensity should be 
located on the surface given by (27) but they could not 
produce direct experimental evidence because they 
worked on powder samples. The confirmation of their 
predictions was obtained by Cowley (1973) and All- 
press (1971) with electron diffraction techniques. 

ZnS (bkmde) NoCt CsC[ 

022 222 

tL P220 

o=z, 222 , ~  
0O2 

2~ 

22O 20 

ooo too 

1"3(~t: 0 4+ 4Qt*  ~2=0 1*5(ai* Q 2) • ~3 .0  

l+cos nhlcoswhz,COsnhzcosnh3+cosnh3coswh1:0 costxht+ cos ITh2* cos IIh3= 0 (1 +cos 2 rr h~)(l*cos2 wh z) (t÷cos2nh#:O 

(a) (b) (c) 
Fig.4. Allowed location for diffuse intensity within one reciprocal unit cell of the base structure for ZnS, NaCI and CsC1- 

derivative structures. 
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(2) Long-range-ordered structures 
Examples of  long-range ordered derivative struc- 

tures of  NaC1 and ZnS (blende) have already been in- 
dicated in Figs. 2 and 3 respectively. Structure types 
related to the CsC1 type are FeSi2, LiaBi, Cu2MnA1, 
PtHg4 and others. If  the structure has a composi t ion 
and a tom ordering such that (9) is fulfilled, all super- 
structure reflexions must be located on the surface de- 
scribed by (24), (27) or (28) respectively. In order to 
make a test, the hkl values related to the superstruc- 
ture unit cell have to be t ransformed into hl, hz, h3 re- 
ferring to the base-structure unit  cell. Superstructure 
reflexions allowed by the space group but which do 
not satisfy the surface equation must  have a zero struc- 
ture factor. This has been verified for the monoclinic  
and trigonal modifications of V6Cs (Sauvage & Parth6, 
1973). As another example the two monoclinic NaC1- 
derivative structure types LiMnO3 and LiSnO3 re- 
cently investigated by Jansen & Hoppe (1973) are con- 
sidered here. In Table 1 are given the monocl inic  hkl 
values for the two types, the h~h2h3 values, the sum 
corresponding to (27) and the calculated intensities. 
Making  use of  the condit ion on structure factors it is 
possible to get informat ion on local atomic arrange- 
ment in an unknown superstructure. 

Supposing that the composi t ion of  the compound  is 

such that (9) cannot  be applied and must  be replaced 
by (20) then an equat ion such as (26) for NaCl-deriv- 
ative structures takes the form" 

1 ? 
.~ ] I ( H ' )  (cos zchl +cos  zch2 ~ kmo~m~'---~ ~v, 

+ cos zcha)2d V* = 1 N~N2 
S N2XAXB 

or written differently" 

1 I v f i i ( H , )  V* [(cos nh I + cos rch 2 + cos/rh3) 2 

- const.]dV* = 0 .  

(30) 

(31) 
The quanti ty between square brackets may take nega- 
tive values over the integration range and thus no con- 
dition can be derived for the intensity I (H') .  For  ex- 
ample with VsCv or CuzGeS3 non-zero superstructure 
reflexions may  occur away f rom the surfaces given by 
(27) and (28) respectively. 

C o n c l u s i o n  

It has been possible to formulate a general ordering 
principle for derivative structures. This has permit ted 
the explanation of  diffuse intensity observed in NaCI- 
related structures and the prediction of  the location 

Table 1. Test of  validity of  the ordering principle for Li2MnO3 and Li2SnO3 structure types 

hkl hi h2 
002 ½ ½ 
020 o ~ 
110 ¼ -1- 

1 2  
ttT ½ - 
021 ¼ x__t 
111 1 ~z 
112 ¼ s__ 
022 ½ '~ 
112 -~ 2_ 
113 0 i2 

- - - 3 "  
023 ¼ 17 

130 ¼ ¼ 
200 ~ - } 
13T ½ ½ 
113 ~ ~r 
004* 1 1 
131" 1 1 
202" 1 - 1 
13~ ¼ ¼ 
117~ ¼ H 
040 0 
22T ~ --1- 

1 2  
220 ~ - 
132 ¼ ¼ 
041 ¼ 19 

T ~  
024 1 
222 1 - ½ 
202* 2 0 
133" 0 0 

Intensitiest 
calculated for 
Li2MnO3 with 

Li2MnO3 LizSnO3 
ha cos zchl + cos zch2 + cos rch3 

½ 0 
- }  0 
- ~  0 
- ~  0 
_5__2 0 
-~  o 

5_~3 0 
- ~  0 
- ~  0 
_ 4  0 

~ 0 
- ~ - 3F2/2 
- ~  0 
- ~  0 

~ 0 

- 1 - 3 *  
- 1  
- ¼ 31/2/2 
_x9 0 

t 2  
- *  0 
__~z 0 1 2  
- ~  0 

- ~ - 3F2/2 
±3_ 0 12  

o 
- {  o 

o } 3* 

structure type 

19.8 18"0 
2.6 0.9 
0 5"1 
5 1.5 
0 4.2 
3.9 1"1 
0 2"7 
2-8 0.7 
0 1"7 
2.2 0.4 
0 1"0 
0 0 
2"9 2"7 
5"4 5"0 

1.9 0"5 
0"9* 0"5* 
0 0.2 
0 0 
0 0"6 
1.0 0 
0 0"5 
1.1 0 
0 0 
0 0"4 
1.0 0 
0"4 0 
8"7* 7"9* 

17"0" 15"5' 

* Fundamental reflexions. 
t After Jansen & Hoppe (1973). 
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of diffuse intensity in short-range-ordered ZnS and 
CsCl-derivative structures. It is essential that these pre- 
dictions be verified by experimental studies. We are 
actively pursuing this problem. Experimental deter- 
mination of diffuse intensity in TiO by Castles, Cowley 
& Spargo (1971) has indicated a surface quite different 
from the ones discussed here. Fermi-surface effects 
were used to explain the particular shape, but it would be 
interesting to know if some other explanation based 
on a simple geometrical ordering principle might not 
be possible. 

The authors are greatly indebted to Dr Brunel and 
Dr de Bergevin who presented the guide lines upon 
which this work is based. 
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Sur la Modulation des Franges EntGurant la Raie 111 Donn& par un Empilement 
de Couches Minces Au-Cu-Au 

PAR J. P. CHAUVINEAU ET C. PARISET 

Institut d'Optique, Laboratoire associd du C.N.R.S., Universitd de Paris-Sud XI, 91405 Orsay, France 

(Regu le 17 juillet 1973, acceptd le 8 octobre 1973) 

Thin-film specimens having the layered polycrystalline structure Au-Cu-Au have been prepared for 
study by X-ray diffraction. When there is approximately only one atomic plane of copper between two 
similar gold films of thicknesses ~ 200 A, it is found that the upper layers of Cu and Au grow epitaxically 
on the first goid deposit, all their crystals having a common [111] axis nearly perpendicular to the surface 
plane. Photographs of the 111 line given by such specimens reveal secondary fringes, :the spacing and 
intensity of which are shown to depend on the spacing d introduced by the copper layer between the two 
gold films. A comparison of the two fringe patterns obtained respectively before and after copper diffusion 
into the gold yields the value: ~= (2-0,16+ 0,02)dm(Au) for a copper layer equivalent to one atomic 
plane grown epitaxically between two (111) gold planes. This result is compared with the theoretical 
value deduced from a 'hard spheres' model for the structure of the Au-Cu-Au layered system. 

," i diffraction de rayons X obtenu par un montage en 
Introduction r6flexion (montage de Brentano). 

Croce, Gandais & Marraud (1961) ont montr6 que l 'on Rappelons que cette mesure est possible lorsque les 
pouvait d6terminer exp6rimentalement l'6paisseur de grains constituant le film sont monocristallins en 6pals- 
films m6talliques minces polycristallins ~. partir du seur, avec un plan (111) sensiblement parall~le /~ la 
syst~me de franges qui apparaissent dans certaines surface., du support, et que, d'autre part, leurs dimen- 
conditions autour de la raie 11 ! du di~grarnme, de sions lat6rales sont suffisamrnent grandes devant leur 


